Mass CEC Workshop

ENERGY MODELING
JANUARY 24, 2018

FRED SZUFNAROWSKI
THE ESSEX PARTNERSHIP

CASE STUDIES

- 1. Assuming constant turbine efficiency (~15%)
- 2. Compared 10 years of historic generation to an "engineers study" over 25 years earlier (~25%)
- Replacement turbine without knowing efficiency
 & flows of existing turbine (~20%)
- 4. Assuming HW & TW constant (~10-15%)
- 5. Short period of hydrologic record (~20%)

BASICS OF ENERGY MODELING

- Sufficient period of hydrological record
 - (greater than 30 yrs.)
- Hydropower equation
 - Power (kW) = Flow (cfs) X Head (Ft) X Eff (%)/11.81
- Model existing plant conditions
 - Existing: flows, head & equipment efficiencies
 - Tip: focus on parameters that will change
- Calibrate model using historic generation
 - Typically generation record is shorter than hydrologic

BASICS OF ENERGY MODELING (2)

- Model Long-Term generation of existing plant
 - Baseline conditions
- Model L.T. generation for changed plant
 - Change in head, flows or efficiency due to:
 - Intake improvements, new trashracks, rake, etc.
 - New or refurbished equipment
 - Operations & Control systems
 - New license conditions
- Compare changed conditions to baseline

Sample Problem

- 220 kW hydro plant, built by utility in 1978
 - Single, 'fixed blade' unit, 30-ft gross head
- 1980's sold to an IPP
 - Did minimal maintenance, License expires in 2018
- You buy the project in 2013
 - Submitted license application in 2016
 - Plan to install new Kaplan unit
 - Apply to Mass CEC for a grant
 - Need good estimate of increase in generation

Model 3 Scenarios

- 1. Original plant
- 2. Calibrate to existing plant
- 3. Changed Case

- 1. Assemble hydrologic record
 - USGS gage: (73.5 mi², record 1932 present)
 - Adjust flows to dam, (96 mi²)
 - Create fields for Year, Month & Day
 - Only use complete years of data
- 2. If conduit project
 - Use historic conduit flow data
- See: Hydrology spreadsheet

- 2. Build a model for existing conditions
 - Flows
 - River flows, license conditions & turbine flows
 - Head
 - HW, TW, headlosses (for entire hydraulic conveyance system), license conditions
 - Efficiencies
 - Turbine, speed increaser, generator, transformer
 - See Model: 1 Un-calibrated original plant

- 3. Calibrate model to historic generation
 - Compare model results to historic
 - Often record of historic gen less hydrologic
 - I like at least 10 historic data points
 - Approximate range of hydrologic flows
 - Only have 1 or 2 years of historic gen data
 - Consider calibrating to monthly totals
 - Summary sheet, col's. D-F

- 3. Calibration cont'd.
 - Recall: modeled plant "As-New"
 - Review of plant logs 2006-2015
 - Output (kW) decreased by >10%
 - Outages increased ~ 5%
 - See Model: 2 Calibrated existing plant
 - TrbnPerf, Energy & Summary sheets

- 4. Model existing plant over hydrologic period
 - Establishes Long-Term baseline generation
 - Per Model: 2 Calibrated existing plant
 - L.T. average annual generation
 - 1932 -2015 (84-yrs): 834 MWH (Baseline)
 - 2006 2015 (10-yrs): 1077 MWH (Calibration per.)
 - Illustrates danger of too short a period of record

- 5. Revise Model to reflect changed conditions
 - See Model: 3 Upgraded Plant
 - Efficiency & flows of new Kaplan
 - Revise generator efficiency
 - Revise forced outage factor

6. Revise Model for new license conditions

Seasonally adjusted min flows

See Models:

- 2a Existing plant New License
- 3a Upgraded plant New License

Wrap-Up

Elements of a sound energy study

- 1. Assemble Long-Term hydrologic data
- 2. Build an energy model for existing conditions
- 3. Calibrate the model to historic generation
- 4. Establish Long-Term baseline generation
- 5. Model changed conditions for Long-Term period

Q&A

